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CONVERSION FACTORS

For use of readers who prefer to use metric (International System) units,

conversion factors for inch-pound units used in this report are listed as
follows:

Multiply Inch-pound unit By To obtain metric unit

foot 0.3048 meter

mile 1.609 kilometer

square mile 2.59 square kilometer

cubic foot per second 0.02832 cubic meter per second

ton per day 0.9072 megagram per day

ton per day per square mile 0.3503 megagram per day per square
kilometer

STATION NUMBERS

Routine surface-water sampling stations are identified by 8-digit numbers;
for example, 09216527. The first two digits (09) refer to the major drainage
basin. The remaining six digits (216527) refer to individual station location;
increasing numerical values of the six digits indicate that stations are located
progressively further downstream.

iv
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Because of the sporadic nature of precipitation and streamflow in these
areas, water gquality is highly variable and difficult to measure or predict.
Without adequate knowledge of sources and processes involved in the transport of
dissolved and sorbed constituents within a basin, the expected effects on water
quality resulting from proposed development or mitigation are difficult to
determine.

A study of the water quality of runoff from small basins characterized by
ephemeral and intermittent streams was conducted by the U.S. Geological Survey
during water years 1980 and 1981 in cooperation with the U.S5. Bureau of Land
Management. One part of the study involved the numerical modeling of flow and
transport to help identify processes dominant in the divestment and transport of
dissolved solids from the small basins. Typically, the small streams at low
flow are only a few feet wide, meandering threugh wider flood plains. During a
runoff event, streams inundate the adjacent flood plains, short-circuiting
meanders and significantly shortening the effective stream length. Existing
flow equations and flow models did not account for this dominant effect.
Extension of the flow equations and subsequent development of numerical solution
techniques initiated in the study of small basins are summarized in a report by
DeLong (1986b).

The second part of the study involved estimating the dissolved-solids
yields contributed by small basins characterized by ephemeral or intermittent
streams. This report describes the method developed and estimates made at eight
water-quality sampling stations (table 1; fig. 2).

Table l.-~Water-quality sampling stations

Station
number Station name
09216527 Separation Creek near Riner, Wyoming
09216545 Bitter Creek near Bitter Creek, Wyoming
09216562 Bitter Creek above Salt Wells Creek, near Salt Wells, Wyoming
09216565 Salt Wells Creek near South Baxter, Wyoming
09216750 Salt Wells Creek near Salt Wells, Wyoming
09222300 Little Muddy Creek near Glencoe, Wyoming
09222400 Muddy Creek near Hampton, Wyoming
09235300 Vermillion Creek near Hiawatha, Colorado
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RELATION OF DISSOLYED-SOLIDS DISCHARGE TO STREAMFLOW

Salts dissolved and entrained by runoff from snowmelt and precipitation are
a major part of the dissolved-solids discharge carried by most Wyoming streams.
Any dincrease in streamflow must result in an increase in dissolved-solids
discharge unless the additional water contains no dissolved solids. Delong
(1977) and Rucker and DelLong (1987) reported a relation of dissolved-solids
concentration to streamflow in the major perennial streams of Wyoming as:

¢ = AQB

where C = dissolved-solids concentration, in milligrams per liter;
Q = streamflow, in cubiec feet per second; and

A and B

regression coefficients.

The dissolved-solids discharge (D) can be estimated by multiplying
concentration by streamflow:

D = QC = AQBtl,

This relation shows that when B is greater than -1, the dissolved-solids
discharge increases with increasing streamflow. Because sources of additional
water to the stream vary, the additional dissolved-solids discharge may vary and
the coefficients A and B may not be constant. DeLong (1977) and Rucker and
DeLong (1987) represented A and B with harmonic functions of the day of the
year. Rucker and Delong were able to effectively relate the variation in
sources of streamflow and dissolved-solids discharge of the major streams to
seasonal trends. This relation is not feasible for ephemeral and intermittent
streams.

Dissolved-solids concentration and discharge generally cannot be estimated
directly from streamflow in ephemeral or intermittent streams as 1in the
perennial streams. The highly variable runoff and dissolved-solids discharge of
the ephemeral and intermittent streams are very sporadic and are not easily
described by smooth harmonic functions. Variation that may occur throughout a
season in the perennial streams may occur within hours in an ephemeral or
intermittent stream.

Washing of Salts from Inundated Basin Surfaces

The washing of readily available salts from basin surfaces during runoff is
a dominant process by which salt loading of ephemeral and intermittent streams
cccurs. Obviously, when there is no runoff in a channel there is also no salt
load. Salts accumulating between runoff events are stored on basin surfaces and
remain available to subsequent precipitation and runoff. The effect of washing
or "flushing" of salts by rainfall and runoff in Salt Wells Creek is shown on
figure 3 and was documented by Lowham and others (1982).
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A finite quantity of salts are stored on basin surfaces and are readily
available for flushing during runoff. After the readily available supply of
salts is exhausted, salt loading of the stream then becomes dependent on the
rate at which salts are produced at the inundated surfaces. Evidence of this
may be seen in dissolved-solids discharge and streamflow hydrographs shown in
figure 3. There are about 50 square miles of drainage area upstream from the
water-quality sampling station. About 7 miles upstream from the station, Salt
Wells Creek is joined by Alkali Creek. Because measurements were not made
upstream from the station during runoff, the cause of the multiple peaks in
figure 3 is not known. Perhaps they result from the combination of Alkali Creek
and Salt Wells Creek upstream from the sampling station. It is clear, however,
that the dissolved-solids discharge hydrograph is shifted forward in time when
compared to the streamflow hydrograph. Note that the dissolved-solids discharge
at equal streamflow is greater on the leading edge of the hydrographs than on
the trailing edge (fig. 3). At a streamflow of 2.5 cubic feet per second, the
leading edge has a dissolved-solids discharge of about 14 tons per day, and the
trailing edge has a discharge of about 9 tons per day. The relative forward
shift of the dissolved-solids discharge hydrograph is a result of the depletion
of the readily available salts.

Ground-Water Contribution

Salt load contributed by ground water in a basin characterized by ephemeral
and intermittent streams cannot be simply determined from dissolved-solids
discharge during base flow. Base flow may be intermittent or nonexistent (by
definition, ephemeral streams have no base flow). Salts brought to the surfaces
of the basin by ground water may not reach the stream channel or be transported
until there is sufficient runoff. These deposits contribute to the readily
available salts discussed earlier. Less obvious is the fact that the ephemeral
and intermittent streams may contribute their streamflow and salt load to the
perennial streams that do have sustained periods of measurable base flow.
Estimates of ground-water contribution to salt loads based on base flows in the
perennial streams may be in error when a significant part of the salt load is
contributed by ephemeral and intermittent streams.

ESTIMATING AVERAGE DISSOLVED-SOLIDS DISCHARGE

The quantity of salts contributed by a basin can be estimated from
continuous records of specific conductance and streamflow collected on perennial
streams (DelLong, 1977, 1986a; Rucker and DeLaong, 1987). Dissclved-solids
concentration is estimated from a relation with specific conductance and then
multiplied by the appropriate streamflow to estimate the dissolved-solids
discharge. However, there are disadvantages to this method when attempting to
estimate dissolved-solids discharge in ephemeral and intermittent streams.
Specific-conductance monitors are not usually operated on ephemeral or
intermittent streams, and when the attempt is made, operation is more difficult
than on major perennial streams because the low- or no-flow periods are
routinely punctuated by abrupt floods of water and sediment.



Continuous Specific~Conductance Monitors

Annual or average dissolved-solids discharges cannot be computed directly
from continuous records of specific conductance and streamflow obtained from
monitors operated on Salt Wells Creek (station 09216565), even though the
attempt to continuously monitor specific conductance at the station was one of
the more successful attempts made on an intermittent stream in Wyoming. A
significant part of the specific conductance record is missing, preferentially
during periods of early spring runoff. Another complication in using published
records from this station is that daily-mean specific conductance and streamflow
are computed from the hourly or continuous record and are the only data readily
available to users.

A daily-mean dissolved-solids concentration can be estimated directly from
the daily-mean specific conductance because they are linearly related. However,
estimates of daily-mean dissolved-solids discharge made from multiplication of
daily-mean streamflow and dissolved-solids concentration may be inaccurate
during periods when concentration and streamflow are changing abruptly.
Typically, the most abrupt changes in concentration and streamflow occur during
periods of greatest load. A more accurate estimate of daily-mean dissolved-
solids discharge would require multiplication of streamflow and concentration
averaged individually over shorter periods of time.

Discrete Specific~Conductance Samples

Average dissolved-solids discharge in this report 1is estimated from
discrete measurements of specific conductance and streamflow. During water
years 1977-81, 183 such measurements were made at the monitor station on Salt
Wells Creek (station 09216565). Dissolved-solids concentration was estimated
from specific conductance and multiplied by streamflow to give an estimate of
instantaneous dissolved-solids discharge:

C=aK + b,

and D = 0.0027QC,

where C = dissolved-solids concentration, in milligrams per liter;

K = specific conductance in microsiemens per centimeter at
25° Celsius;

a and b = regression coefficients;

D = dissolved-solids discharge, in tons per day; and

Q = streamflow, in cubic feet per second.

As shown in figure 4, the instantaneous dissolved-solids discharges fit a
log-normal distribution as do similarly estimated discharges at other selected
stations in the southern part of the Green River basin in Wyoming. The averages
or arithmetic means (table 2) of the distribution were estimated from the
geometric means and standard deviations by methods presented by Sichel (1952)
and adapted by DeLong (1986a).
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Adjusting Estimates for No-Flow Days

The average values of dissolved-solids discharge represent periods during
which streams were flowing and must be adjusted by a theorem of conditional
probability to estimate overall averages. Zerc estimates of dissolved-solids
discharge, resulting from periods when streams were not flowing, were not
included in the log-normal distributions. Jennings and Benson (1969) similarly
applied a theorem of conditional probability to distributions of annual flood
peak data. Simply stated, to adjust estimates from the distribution drawn only
from the period when there is flow, the estimates are multiplied by the
probability that there will be flow. For example, daily streamflow records
indicate there were 89 days at station 09216565 in which no flow occurred during
the 5 years analyzed., The ratio of days on which flow occcurred to the total
number of days is an estimate of the probability of flow occurring during the
analyzed period:

0.95 = (1825-89)/(1825).

The estimated average dissolved-solids discharge during the flow period
(table 2) is 1.98 tons per day. Consequently the overall average for the 5-year
period is:

(1.98)(0.95) = 1.88 tons per day.

ESTIMATES OF AVERAGE DISSOLVED-SOLIDS DISCHARGES AND YIELDS

The estimates of average dissolved-solids discharges at the eight stations
(table 2) range from less than 2 to 95 tons per day; the largest discharge is
about 50 times greater than the smallest discharge. As might be expected, much
of this variation is related to the drainage area upstream from the sampling
stations (fig. 5). Dissolved-solids yields range from about 0.023 to 0.107 ton
per day per square mile; the ratio of largest to smallest yield is about 4.6.

The slopes of lines in figure 6 indicate the average rates at which
dissolved-solids discharges increase between stations. The slope of the three
lines range from 0.081 to 0.092 ton per day per square mile, a variation of less
than 15 percent. Thus, on the average, the drainage areas contributing to the
streams between the six paired water-quality stations yield dissolved solids at
similar rates (tons per day per square mile). The drainage area encompassed by
the six paired sites is more than two-thirds of the area represented by the
three downstream-most sites and more than one-half of the total area represented
by all of the studied sites. Presumably, if more sites were sampled upstream
from the upstream—most sites, the common rate of dissolved-solids yield could be
extended to an even greater part of the studied area.

11
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CONCLUSIONS

Average dissolved-solids discharge for ephemeral and intermittent streams
in the Green River basin, Wyoming, may be computed from discrete samples of
specific conductance and streamflow. The method presented requires that the
relation between specific conductance and streamflow, as well as the probability
of the occurrence of flow be known. Instantaneous dissolved-solids discharges
computed at selected stations fit log-normal distributions from which arithmetic
means subsequently may be computed. The arithmetic means may be adjusted for
no-flow days (which were not included in the distribution) by using a theorem of
conditional probability.

Estimates of dissolved-solids yields for eight stations analyzed range from
0.023 to 0.107 ton per day per square mile of drainage area. The
dissolved-solids yield from a drainage area encompassed by two sampling sites on
a stream system may be estimated from the slope of the dissolved-solids
discharge versus drainage area line. ZEstimates of dissolved-solids yields
contributed by drainage areas between the six paired water-quality stations on
Bitter Creek, Salt Wells Creek, and Little Muddy and Muddy Creeks ranged from
0.081 to 0.092 ton per day per square mile or less than 15 percent variation.
This indicates that more than two-thirds of the drainage area represented by the
three downstream-most sites yields dissolved solids at nearly the same rate.
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